Structure Reports

Online
ISSN 1600-5368

Wei Zhou, Wei-Xiao Hu* and Guo-Wu Rao

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.171$
Data-to-parameter ratio $=16.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

10-(2-Methylbenzylidene)anthrone

The title compound, $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}$, was prepared from anthrone and 2-methylbenzaldehyde. The central six-membered ring has an asymmetric boat conformation, in which the carbonyl carbon and the opposite carbon deviate from the plane of the ring by 0.124 (3) and 0.283 (2) \AA, respectively.

Comment

It was reported recently that the derivatives of 10 -substituted benzylideneanthrone have a high potential for antitumor activity (Paull et al., 1992). In a continuation of our work on the structure-activity relationship of the derivatives of $10-$ substituted benzylidene anthrone (Hu \& Zhou, 2004), we have obtained a yellow crystalline compound that was the product of the reaction of anthrone and 2-methylbenzaldehyde. The structural identity of the product, (I), was determined by single-crystal X-ray diffraction.

(I)

The molecular structure of (I) is illustrated in Fig. 1. Selected bond lengths and angles are listed in Table 1. In (I), atoms C1, C6, C8 and C13 are coplanar within 0.0058 (7) A, with atoms C7 and C14 deviating from the plane by 0.124 (5) and 0.283 (2) A, respectively. Therefore, the central sixmembered ring of (I), has an asymmetric boat conformation.

Experimental

To a mixture of anthrone ($3.9 \mathrm{~g}, 20 \mathrm{mmol}$) and 2-methylbenzaldehyde $(3.0 \mathrm{~g}, 25 \mathrm{mmol})$ were added pyridine (30 ml) and piperidine (0.5 g , 6 mmol). The air in the system was removed using an aspirator, and replaced by nitrogen gas; this operation was repeated three times. Nitrogen gas was bubbled through the mixture continuously until the reaction was complete. The reaction mixture was refluxed for 6 h . The completion of the reaction of anthrone was determined by thin-layer chromatography. The mixture was cooled to room temperature and poured into methanol (75 ml) and then placed in a refrigerator overnight. The precipitate was collected and recrystallized twice from acetic acid to afford yellow chunks (0.8 g , yield 14.0%; m.p. 363366 K).

Received 14 June 2004
Accepted 17 June 2004
Online 26 June 2004

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}$
$M_{r}=296.35$
Triclinic, $P \overline{1}$
$a=7.0137(2) \AA$
$b=10.3135(4) \AA$
$c=11.5107(5) \AA$
$\alpha=107.020(5)^{\circ}$
$\beta=91.224(4)^{\circ}$
$\gamma=100.854(8)^{\circ}$
$V=779.33(6) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.263 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 4435
$\theta=2.4-27.4^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Chunk, yellow
$0.41 \times 0.31 \times 0.28 \mathrm{~mm}$
Data collection

Rigaku R-AXIS RAPID	3438 independent reflections
\quad diffractometer	2503 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.022$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$\quad(A B S C O R ;$ Higashi, 1995)	$h=-9 \rightarrow 9$
$T_{\min }=0.972, T_{\max }=0.979$	$k=-13 \rightarrow 13$
5264 measured reflections	$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1018 P)^{2}\right.$ $+0.0246 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.32$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.061 (10)

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

$\mathrm{O} 1-\mathrm{C} 7$	$1.2143(18)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.339(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$121.85(15)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$129.89(15)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$120.93(16)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 15$	$119.64(15)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 1$	$123.81(15)$	$\mathrm{C} 21-\mathrm{C} 16-\mathrm{C} 15$	$120.74(15)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$119.85(15)$		
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-10.1(2)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 14-\mathrm{C} 13$	$25.4(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$11.4(2)$	$\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 1$	$-24.1(2)$

H atoms were positioned geometrically ($0.96 \AA$ for methyl H atoms and $0.93 \AA$ for the remainder) and refined using the ridingmodel approximation, with $U_{\text {iso }}=1.2$ (or 1.5 for methyl H atoms) times $U_{\text {eq }}$ (parent atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/

Figure 1

The structure of (I), shown with 30% probability displacement ellipsoids.

MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are very grateful to the National Natural Scientific Foundation (grant No. 20272053) for financial support.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hu, W. X. \& Zhou, W. (2004). Bioorg. Med. Chem. Lett. 14, 621-622.
Paull, K. D., Lin, C. M., Malspeis, L. \& Hamel, E. (1992). Cancer Res. 52, 38923900.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2003). CrystalStructure. Version 3.5.1. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

